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Motivation

) LR Why are we interested

oo bERen . ool Dy propagation in SN
o S oo matter?
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oS el e s supernova explosion
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« Want to learn about v's



Motivation

SN1987A:

First observed SN B Kamiokande
neutrinos — looking A i
Inside.

Details still missing, but
overall SN understanding
was confirmed.

Aim:

Understand next
observations and : ’ iime 3
neutrinos better.




Core-collapse SN i a (Aut)shell

 Stars with masses between
roughly 8 and 25 M_ .

Dominant elements

Hydrogen ——
Halium —
CGarbon ——
Oxygen— >
Silicon—"__—" ™,
Iran =
VTS
ri

« Burning ceases at Fe-peak.

 Onion structure.
« Core collapses gravitationally.

« |Infalling material bounces -
outward moving shock wave.

e NS cools off and shrinks.

 Wind is compelling site for
heavy element nucleosynth.

« v's emitted through out.
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Flavor conversion along prepagation

Flavor eigenstates, v

. # mass eigenstates, v .

— v can change flavor as they propagate.
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Mixing angles, 0, , iIn matter will depend on the
iInstantaneous density.

Flavor conversion depends on the hierarchy.



Neutrino mass hierarchies

Normal hierarchy Inverted hierarchy
2 2
m3 | 1}3 1}’2— m2
LJ"l_ m%
v vV v
e T u

 The hierarchy depends on the sign of the
Am _mass splitting.



Flavor conversion: in Vacuum
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Flavor conversion in the SN

Oscillations
Inside the Earth




Matter resonances

Neutrino flavor changes can occur in two density regions:

) Am? 10 MeV\ /0.5
ies == 14 % 10° g/cc( & ) ( & ) ( 5

1 eV? E Y,

p,, corresponding to
Am *~2.43-10°eV?and 6 = 9°
p, corresponding to

Amlzz = 7.56- 10'5 eV2 and 912 = 34° PH, 1 Mev

PH, 100 MeV

PL, 1 Mev

Such flavor changes are called
matter or Mikheyev-Smirnov-
Wolfenstein (MSW) effects.




Resonance transitions

[Dighe & Smirnov, 2000]

« At high densities flavor states equal matter states.

« At resonance, simplified probability is: Pjump = exp(-y n/2) ,
where y o« ne/(dne/dr) :



Flavor conversion in the SN

Oscillations
Inside the Earth




Neutrino self=interactions

[adapted from Duan, Fuller & Qian, 2010

. At high enough neutrino densities n_ .

- DependsonE, Ej, 9, and the flavor of the background v or v.



Neutrino Schrodinger Equation

idS/dt=(H_+H _+H )S

 Where:
H __oc Am?/4E vacuum part
H oV, matter or MSW part
HW,,- oc cos¢i’j n (E) self-interaction part

W () = S(t,t) W (t) evolution operator S
P.=|S° transition probability
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Density: profiles

Ideally multi-D simulations but
does not go long enough.

1D sim. of 8.8 M _, 10.8 M_and
18.0 M _ progenitors.

Provided by Basel group.

4.5, 10.7 and 21 s pb duration.

L and E from same simulations.

10.8 M _ develops contact

discontinuity, forward and
reverse shocks.



Shock morphoelegy

Numerical soft shocks.

When 0_, is big, only

adiabatic transitions
happens: y >>1,
Yy oC ne/(dne/dr)

P =exp(- yn/2)

Jump
Need diabatic at shock.

Partially steepend by
hand.




Steepness of density: proiiles

20 MeV v and v, IH

Original profile, black Steepened profile, red
line on previous slide. line on previous slide.



Turbulence

o profiles from 1D simulation.
Turbulence by hand - 2 areas.

From Kneller & Volpe (2010),
we have the equations for
adding turbulence:

V(r) = (1 + F(r)) (V)(r)
Where F(r) is given by:

ro—71

N,
X Y {Apcos[kn (r—rr)] 4 Bysin[kn (r —rr)]}

n=1

0.01 0.1 1
r[10° cm]

C,= 0.1,0.3,0.5

Kolmogorov spectrum



Turbulence

o profiles from 1D simulation.
Turbulence by hand - 2 areas.

From Kneller & Volpe (2010),
we have the equations for
adding turbulence:

V(r) = (1 + F(r)) (V)(r)
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Kolmogorov spectrum



Neutrino propagation

v produced at PNS.

Changes flavor due
to:
- collective effects
- matter effects

Matter resonances:
p,: Am “ando
p, :Am *and 6 _

Turbulence changes
matter effects.
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Results

More details in:
T. Lund and J. P. Kneller,
Phys. Rev. D 88, 023008 (2013)



Results

« Results are probabilities
for matter states;

Pij = P(Ui — Uj)




Results

« Collective: 70 - 1000 km < Results are probabilities
. Matter: 1000 km - end for matter states;

e Combined: 70 km - end

Pij = P(Ui — Uj)

100 1000 10000 100000

r [km]




Collective Induced fieatures

« Complete conversions for some E.
« Partial conversion in IH v.

« Difference between hierarchies.

« Effect in the NH - for both v and v.

40 60 80 100 20 40 60
E [Mev]




Matter (MSW) induced features

H resonance clear - for both v and v.

L resonance at low E for v.

 Multiple resonances —» phase effect.

20 40 60 80 100 20 40 60 80 100 20 40 60 8 100 20 40 60 80 100
E [Mev] E [Mev]




Combined collective ana MSW




Combined collective ana MSW

10.8 Mg,

Already swapped v with
E > 30 MeV gets re-
swapped by MSW.

t=28s, 10 My, ——

100 1000 10000 100000
1 [km]




Adding 10% turbulence

IH, no turbulence NH, no turbulence




Adding 10% turbulence

IH, no turbulence NH, no turbulence

Collective and MSW features survive moderate amounts of turbulence!



Larger turpbulence

NH, no turbulence NH, 10% turbulence

Large amounts of turbulence obscures some collective and MSW
features, but also brings new ones to life!



Larger turpbulence

NH, no turbulence NH, 10% turbulence

Average P and P__ above zero at 50%!



Time evolution of features

« Results up to now was
for one snapshot in time.

« Density profiles evolve:
- shock moves out in r
and thus to lower p.
- reverse shock forms.




Shock wave progression 10 M

At 1.8, 28,48,58 6.8and7.8s

* Following the shock progression to lower densities
where higher energy neutrinos have resonance.



Shock wave progression 10 M

At 1.8, 28,48,58 6.8and7.8s

* Following the shock progression to lower densities
where higher energy neutrinos have resonance.

 Learn about the progenitor if observed and followed.



Shock wave progression 18 M _

At 3,5, 7,9and 11 s

. Cleaner for the 18 M_ progenitor - no phase effects.

 More extended envelope thus less change in energy of
affected neutrino.



Similarities across
progenitors

Masses of 8.8 M@, 10.8 M@
and 18.0 M@.

Dominated by collective
effects at 1 sec.

Similarity of L and E.

Collective features are
robust.

8.8 M_and 10.8 M_ have
crossings at different E.




Observability
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« SNOWGLOBES: scint 50 kt

Caveat: Assumes constant flux over 1 sec.
Work in progress.



Observability
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Caveat: Assumes constant flux over 1 sec.
Work in progress.




Time evolution

e Movement of
collective split.

 Brief shock wave
feature.

 Hierarchy
differences.

[Work in progress in collaboration with Tara J. Aida]



Time evolution
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[Work in progress in collaboration with Tara J. Aida]



Lessons from late time signals

Robust collective features
In matter basis, and visible
In flux spectra.

Features of collective and
MSW effects survive up to
moderate turbulence.

Turbulence makes things -
more complex.

10 20 30 40 50 60 70 80 90 100

Follow shock wave. Energy (MeV)




Early time v olbservations

- Ssignatures of the SASI
explosion mechanism

In collaboration with:
H.-Th. Janka, G. Raffelt, A. Wongwathanarat, A. Marek, C. Lunardini and E. Muller



Shock revival

Outward movement of
shock stalls due to \
energy losses.

Neutrino heating.

Aided by SASI -
Standing Accretion
Shock Instability -
Increasing gain region.

Pertubation of shock
front decomposed in
spherical harmonics. shock

Fe. 6

[Janka et al., 2011]
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[R.Buras, A.Marek,
H.Th.Janka]

2D simulation of a 11.8 MS



SASI in 2D and 3D

2D non-rotating 15 M_ 3D non-rotating 15 M_
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[A. Marek, H.-Th. Janka & E. Muller, 2009] [ E. Miiller, H.-Th. Janka & A. Wongwathanarat, 2011]



Effects off SASI

N hemispheric avg
smoothed N hemispheric avg

50 100 150 200 250 300 350 400
time [ms]

[Lund et al., 2010]

N hemispheric avg
smoothed N hemispheric avg

50 100 150 200 250 300 350 400

time [ms]

2D non-rotating 15 M_

n



lceCube - CherenkoV telescope

« Digital Optical Modules with
photo-multiplier tubes.

« Optimized for energy range:
e 1TeVLE<LIPeV

- SN v_energy:

e E~12-18 MeV \

* Not entire Cherenkov cone only
one photon per interaction -
diffuse blue glow of the ice.

[lceCube homepage |



lceCube - superiority.

For entire duration (t~10 s) of
SN we expect ~10° events.

Factor of 100 more than
expected in
SuperKamiokande.

Instantaneous rate for 2D:
e« I' ~900mst

SN

Dark Current noise in IceCube:

e I' ~ 1340 mst

noise

Looking at time structure of
the increased noise.
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[SuperKamiokande homepage ]
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Calculations

Expected eventrate in IceCube:

R; =114 Hl"-}_1 L; (10 kp(‘)d ( EI‘I'I]S
e — S n = - _

D 15 MeV

 Energy and luminosity data from numerical
simulations by the Garching group.

2D: 3D:

. Progenitor star; 15 M_, * Progenitor star: non-rotating,
non-rotating, soft and stiff 2 models with 15 M -, and
EoS. 1 model with 20 M_.

. Progenitor star; 11.2 M@ :
non-rotating, 3 EoS.



lceCube event rates
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50
time [ms]
[Lund et al., 2012.]

[Lund et al., 2010.]

« |nstantaneous rate for  |Instantaneous rate for
3D at 1 kpc:

2D at 10 kpc:
r ~ 900 ms™

SN, 2D

e I ~ 55000 ms*

SN, 3D



lceCube event rates
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[Lund et al., 2012.]

[Lund et al., 2010.]

 |nstantaneous rate for

 |nstantaneous rate for
2D at 10 kpc: 3D at 1 kpc:
- -1
FSN’ , ~ 900 ms ! . FSN, ., ~ 55000 ms

Do Fourier transform to look for time structure.



Results - 2D

Non-rotating 15 M_ at 10 kpc

=
o
o
s
o
~
@
=
w)

N hsph avg E—
Eq hsph avg —
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« SASI modes:
50Hzisl =1
JOHzis| =2




Results - 3D

Non-rotating 15 M_ at 1 kpc

=
g
%  Minor
2 hemispherical
A differences.
« SASI modes:
50Hzis| =1

JOHzis| =2

[Lund et al, 2012.]



Stastisticall effects

e Statistical fluctuations of
the observed signal:

N =R
« Was ~ 3 % in 2D, compared
to 18 % for SASI induced.

e At 10 kpc for 3D would have
been ~ 4 %, compared to

01 015 02 025 03 035 04 045 1-29% for SASI induced.
t [s]

—
—
' 7]
5
Q
=3
3]
&~

 Scales with 1/D, thus less

N20 at 2 kpC than 1 % at 2 kpC



Stastisticall effects

« With given probilities a
peak caused purely by
statistical fluctuations
will fall below gray line
levels.

 Peaks reaching above
cannot be caused
purely by statistics. f [Hz]

[Lund et al, 2012]



Lessons firom early time; signals

N hsph avg _—
Eq hsph avg —_—

SASI effects observable in S hsph ave
lceCube, despite energy Do
resolution — better

understanding of SN.

DC values:

north = 3.787 x 10’
south =4.173 x 10” 5
equatorial =4.149 x 10
noise = 10.08

g

=

Q

(5]

=9
v

o)

z

S
2%

If observed short-lived
mechanisms ruled out.

Signal depends on mass,
EoS, rotation, viewing
direction and flavor.

Weaker SASI in 3D models.

Power spectrum




Perspectives

Investigations give handles on next galactic ccSN:
Gravitational waves.

Observational predictions of neutrino signals:

- Accretion stage fluxes can tell about SASI.

- Cooling stage fluxes may tell about collective,
shock, turbulence and MSW effects.

Neutrino wind composition may be different —»
changes expected nucleosynthesis.

Yiv emission only
Y_:incl v absorption

0 100 120 140 160 180 200 220 240
Mass Number

[Lund & Kneller in prep.] [Winteler et al, 2012]

10 20 30 40 50 ‘ 70 80 90 100
Energy (MeV)

Power spectrum

Nonlinear SASI

SASI plumes: i

- Explosion
Prompt convection (Prolate)

0.0 0.2 0.4 0.6 0.8 1.0
Time after bounce [s]

02 04 06 08
t [s]

iy n I
100 150 200 250
£ [Hz]

[Lund et al, 2012]



Conclusions

 Observing neutrino signals
can help us learn about SN
and neutrinos:
- explosion mechanism
- shock wave
- collective effects
- matter effects.

e Need different detector
types.




Conclusions

 Observing neutrino signals e
can help us learn about SN " Thank
and neutrinos: you!

- explosion mechanism
- shock wave

- collective effects

- matter effects

« Need different detector
types. R e

Need new Milky Way SN.
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